How Artificial Groundwater Recharge Can Mitigate Aquifer Depletion


A look at the reality groundwater depletion and how artificial groundwater recharge might be an answer to this sobering problem


Updated: July 24, 2023
 / 
Jeremiah Zac
 / 

Share:

With the steady increase in global population and continued mismanagement of water usage, many of the world's water reserves have reached critical condition.

The Middle East, the American Southwest, and Southern Asia have all seen gross overuse of their water resources, which has led to a dramatic decrease in groundwater supply.











Unlike surface water, groundwater volume is quite difficult to estimate. And since groundwater supply isn't naturally recharged as quickly as surface water, it is unfortunately common for aquifers to be depleted in areas of excessive pumping.

Many water initiatives understand the sensitivity of the groundwater situation and are advocating for better management of the world's aquifers. Supplementing the water supply using artificial and natural methods provides a cost-effective means of boosting groundwater availability.

In this article, we will give an overview of how groundwater works in nature's hydrologic cycle, we'll discuss the causes and effects of groundwater depletion, and finally, we'll discuss the importance of implementing artificial groundwater recharge projects.


In this article, we'll cover:

  • How the groundwater gets naturally recharged through the hydrologic cycle
  • The major causes of groundwater depletion
  • How artificial groundwater recharge can help counter groundwater depletion





Groundwater Recharge and the Hydrologic Cycle



Image

A greater amount of water still lies beneath the earth's surface in aquifers –layers of porous rock which groundwater freely flows through.

These aquifers exist at different depths throughout the earth's crust, but most are far too deep to be accessed safely and effectively.

The level at which the water in these aquifers rests is known as the water table. The higher the water table, the easier it is to access. The lower the water table, the more difficult it is to access and the more indicative of depletion.

Many topographical, meteorological, geological, and human factors affect water availability in these aquifers. Rocks have different permeability and porosity and therefore hold water at various capacities. Refilling the aquifers is known as recharging and can happen naturally and artificially.









How Does the Natural Groundwater Recharging Process Work?



Image

Groundwater is recharged naturally by precipitation, ice, and snowmelt. Through the hydrologic cycle, nature uses a unique process to resupply the earth's groundwater.

When the earth's surface water is vaporized into the atmosphere through evaporation, it condenses in the atmosphere and falls back to the world as rain and snow. It then seeps through the soil and gets enclosed in aquifers as groundwater. A minimal amount of surface water from lakes and rivers can also contribute to the groundwater recharging process (USGS).

Groundwater recharge is impeded by human activity such as industrial development and paving. These activities result in the loss of topsoil permeability, increasing the likelihood that the water remains on the surface. Using groundwater for agricultural activities such as irrigation also lowers the water table.

Protecting the natural groundwater recharging process is an excellent initiative to ensure groundwater sustainability since water pumped from aquifers should always be lower or equal to the recharged volume.






What is Groundwater Depletion?



Image

Groundwater depletion is simply the act of gathering or "depleting" the groundwater supply by pumping it to the surface. It becomes a serious concern when the rate at which groundwater is being depleted surpasses the rate at which it can be replenished. Because groundwater supply is difficult to measure, the available water for any given region can be easily miscalculated. Overuse is, unfortunately, all too common.

Even though 70% of the earth's surface is covered in water, almost all is undrinkable salt water. Most of the freshwater that humans consume exists as groundwater in aquifers beneath the surface. Because groundwater remains one of the primary sources of potable water on earth, protecting its supply is vital.






Major Causes of Groundwater Depletion



Image

A finite amount of water circulates through the earth's hydrologic cycle – continuously being evaporated, precipitated, and soaked through the soil into groundwater, over and over again. In theory, because of this continuous cycle, the earth needn't worry about the amount of available water since it will always be returned at some point. Issues arise when this hydrologic cycle is disrupted, as we'll see with the following reasons given.


Excessive Pumping

The primary cause of groundwater depletion is the excessive and continuous pumping of underground water reserves. Groundwater is naturally recharged by the hydrologic cycle as rain seeps through the soil, "recharging" the groundwater. But when the water is depleted faster than it can be recharged naturally, it is considered "water-stressed." The world pumps about 30 billion gallons of water daily (Barlow and Clarke, 2005).


Pollution

It is much less labor-intensive and more cost-efficient to harvest water from surface-water sources such as lakes, rivers, and springs as opposed to pumping from underground. However, when surface water becomes polluted with chemical waste and other contaminants, other means of retrieving potable water must be sought – usually groundwater. Surface water pollution is one of the primary reasons for excessive groundwater depletion. Furthermore, when water is polluted with chemicals, it can become unfit to contribute to the hydrologic cycle – unable to be absorbed back into the earth and therefore taking away from the groundwater recharge quota.


Soil Erosion

Due to overgrazing, changes in climate, and some cases, paving and industrial contact, soil erosion has become an ongoing problem. The earth's surface is hardened to the point where rainwater can no longer replenish the groundwater beneath it.


Excessive Dam Building

While dams help provide water and energy to a specific region, too many dams can disrupt the hydrologic cycle by preventing water from flowing to areas where it would otherwise naturally reach. This leads to withholding water and nutrients to certain areas, creating deserts, eroded soil, and unreplenished groundwater.











Effects of Groundwater Depletion



Image

Drought and Famine

When water supplies are threatened, communities risk drought and famine. Large aquifers are often used as irrigation and agricultural resources, directly affecting the food supply. An example is the Ogallala River Basin beneath the Great Plains of the United States, which has seen mass depletion due to overuse. If the aquifer isn't replenished more quickly than it is being depleted, it will cause major problems for the region's inhabitants in the future (Conserve Energy Future).


Disrupted Ecosystems

Groundwater depletion will cause surface water to become shallow. Because groundwater flows into freshwater bodies and underlays seas and oceans, a groundwater shortage will also drastically reduce surface water and, in turn, affect aquatic life and the ecosystem at large.


Saltwater Contamination

Though we categorize our water sources by name – groundwater, seawater, surface water – there technically are no barriers that separate these bodies; they flow freely into each other. Groundwater flows into rivers, and rivers flow into the ocean. If groundwater is depleted excessively, there is potential for the less-occupied aquifers to get contaminated with seawater. This can eventually lead to higher drinking water prices due to higher purification costs.


Sinkholes

According to the USGS, groundwater pumping directly connects to the appearance of sinkholes on the earth's surface. As groundwater is pumped, the negative pressure and excess movement of water cause unnatural disruption in the porous rock, allowing for instability in the rock formation and ultimately collapse.


Even Greater Depths

Groundwater depletion will require us to go deeper into the earth to find water, requiring more resources and sophisticated equipment.






The Gravity of the Situation



Image

Groundwater depletion has become a regular discussion among geographers, hydrologists, and earth scientists. If we don’t understand the consequences surrounding this, we could easily use up more water than required, and the effects can be more catastrophic than mere drought alone.






Artificial Groundwater Recharge



Image

Natural recharge is very slow and cannot satisfy the water needs of the teeming population. Humans can help by purposefully injecting water into aquifers.






What is Artificial Groundwater Recharge and How Does it Work?



Artificial recharge is the process of helping the natural recharge process by guiding water back into aquifers under controlled conditions using special recharging wells. Canals and irrigation furrows can assist the water's natural flow back into the ground. Water can also be pumped from a dewatering system into a recharge location and injected back into the ground. The water is purified before injection to prevent clogging of aquifers.






Direct Surface Recharge Technique

This is a process by which excess water is collated and passed into a lake or shallow water body while it naturally sips into the earth. The effectiveness of this method is dependent on the porosity and permeability of the underlying rocks which the water is passed unto (University of Pisa).


Direct Subsurface Recharge Technique

As the name implies, this is a process where water is injected beneath the earth's crust. This is also referred to as direct injection because water is passed into very deep aquifers. Water treatment is advised as there is less natural purification with this method. The drawback to this method is the cost of drilling and piping systems for such great depths. Filtration costs should also be considered (Hydrology and Earth Systems Sciences, 2013).






Advantages of Artificial Groundwater Recharge


  • The technology is well understood by experts and the general populace.

  • Construction of wells is often done in rocky areas. It will require fewer strengthening materials like rods, stones, etc.

  • Artificial groundwater recharge ensures there is water all-year-round for agricultural purposes.

  • Aquifer water can be improved by injecting high-quality water.

  • Recharge systems are relatively easy to operate.

  • Controlling surface water runoff for water
    recharge reduces sedimentation in most water basins.





Aquifer Storage and Recovery (ASR)



Image

Aquifer Storage and Recovery (ASR) is a process that replenishes groundwater in specific aquifers with the purpose of accessing it at a later time. They are usually done on a smaller scale than most Artificial Groundwater Recharge operations and focus on smaller, enclosed aquifers.


Objectives of ASR projects

  • To store excess water when it is available.
  • To recover stored water and make it available for use during dry periods





Criticisms of Artificial Groundwater Recharge



  • Lack of financial backing and appropriate laws to put landowners in check on the management of drainage wells will lead to the breakdown of the wells. This will further lead to contamination of groundwater and clogging of aquifers.
  • Aquifers can degrade if injected water is not controlled.
  • Groundwater recharge technology might not be as beneficial when small volumes of water are involved. Efficiency is key.
  • Even though it’s an easy process to understand, adequate knowledge of hydrology is required for a large-scale process.
  • The construction of dams, water pathways, and facilities may cause damage to the environment.





Conclusion



Groundwater depletion and recharging are very vital issues to our ecosystem. Adequate funding should be granted to support the research and implementation of related projects. Looking forward, questions on floodwater, groundwater contamination, and chemical reactions between aquifer water and recharge water are issues that should be studied critically.






Thank you for taking the time to read our article on artificial groundwater recharge. We'd love to hear your feedback in the comments section below. If you've found this article to be useful and are interested in learning more, be sure to sign up for our newsletter.

Share this post!

References

Barlow, M., & Clarke, T. (2005). Blue gold: The fight to stop the corporate theft of the world's water. New York, NY: New Press.

Conserve Energy Future. (2016, December 25). Causes, Effects and Solutions of Groundwater Depletion. Retrieved from https://www.conserve-energy-future.com/causes-effects-solutions-of-groundwater-depletion.php

FEMA. (n.d.). Aquifer storage and recovery. Retrieved from https://www.fema.gov/media-library-data/1487160966426-3e774ec4315295499f45a25bc8915c90/ASR_Fact_Sheet_Feb2017_COMPLIANT.pdf

Hydrology and Earth System Sciences. (2013). Natural vs. artificial groundwater recharge, quantification through inverse modeling. Retrieved from https://www.hydrol-earth-syst-sci.net/17/637/2013/hess-17-637-2013.pdf

United Nations Environment Programme. (n.d.). Artificial recharge of groundwater. Retrieved from http://www.unep.or.jp/ietc/publications/techpublications/techpub-8e/artificial.asp

University of Pisa. (n.d.). Artificial groundwater recharge. Retrieved from http://www.eolss.net/sample-chapters/c07/e2-09-06-06.pdf

USGS - U.S. Geological Survey Office of Groundwater. (2017, December 18). USGS Groundwater Information: Artificial Recharge. Retrieved from https://water.usgs.gov/ogw/artificial_recharge.html

USGS. (2016, December 15). Groundwater Storage. Retrieved from https://water.usgs.gov/edu/watercyclegwstorage.html

Water for All. (n.d.). Depletion and Artificial Recharge. Retrieved from http://12.000.scripts.mit.edu/mission2017/depletion-and-artificial-recharge/

Water in the West. (2014, July 31). Understanding California's Groundwater. Retrieved from http://waterinthewest.stanford.edu/groundwater/recharge/

I'm Jeremiah, the owner of World Water Reserve. I'm a writer and researcher with a particular interest in sustainability and rural living, water scarcity, and innovative water purification methods. I utilize my multimedia and communication experience in the NGO and humanitarian fields to bring light to important topics. My passion is to educate others on the reality of the global water crisis and on ways to sustain themselves and their families in the midst of it.
Jeremiah Zac